Calderón Reproducing formulas and applications to Hardy spaces

Pascal Auscher, Alan McIntosh, Andrew Morris

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
113 Downloads (Pure)

Abstract

We establish new Calder\'{o}n reproducing formulas for self-adjoint operators $D$ that generate strongly continuous groups with finite propagation speed. These formulas allow the analysing function to interact with $D$ through holomorphic functional calculus whilst the synthesising function interacts with $D$ through functional calculus based on the Fourier transform. We apply these to prove the embedding $H^p_D(\wedge T^*M) \subseteq L^p(\wedge T^*M)$, $1\leq p\leq 2$, for the Hardy spaces of differential forms introduced by Auscher, McIntosh and Russ, where $D=d+d^*$ is the Hodge--Dirac operator on a complete Riemannian manifold $M$ that has doubling volume growth. This fills a gap in that work. The new reproducing formulas also allow us to obtain an atomic characterisation of $H^1_D(\wedge T^*M)$. The embedding $H^p_L \subseteq L^p$, $1\leq p\leq 2$, where $L$ is either a divergence form elliptic operator on~$\R^n$, or a nonnegative self-adjoint operator that satisfies Davies--Gaffney estimates on a doubling metric measure space, is also established in the case when the semigroup generated by the adjoint $-L^*$ is ultracontractive.
Original languageEnglish
Pages (from-to)865-900
Number of pages36
JournalRevista Matematica Iberoamericana
Volume31
Issue number3
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Calderón Reproducing formulas and applications to Hardy spaces'. Together they form a unique fingerprint.

Cite this