Abstract
We prove Turner’s conjecture, which describes the blocks of the Hecke algebras of the symmetric groups up to derived equivalence as certain explicit Turner double algebras. Turner doubles are Schur-algebra-like `local’ objects, which replace wreath products of Brauer tree algebras in the context of the Broué abelian defect group conjecture for blocks of symmetric groups with non-abelian defect groups. The main tools used in the proof are generalized Schur algebras corresponding to wreath products of zigzag algebras and imaginary semicuspidal quotients of affine KLR algebras.
Original language | English |
---|---|
Pages (from-to) | 453-512 |
Number of pages | 60 |
Journal | Annals of Mathematics |
Volume | 188 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Sept 2018 |
Keywords
- blocks of symmetric groups
- generalized Schur algebras
- KLR algrbras