Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans

Zhao-Jie Teng, Qi-Long Qin, Weipeng Zhang, Jian Li, Hui-Hui Fu, Peng Wang, Musheng Lan, Guangfu Luo, Jianfeng He, Andrew McMinn, Min Wang, Xiu-Lan Chen, Yu Zhong Zhang, Yin Chen*, Chun Yang Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

91 Downloads (Pure)

Abstract

Background: Dimethyl sulfide (DMS) is the dominant volatile organic sulfur in global oceans. The predominant source of oceanic DMS is the cleavage of dimethylsulfoniopropionate (DMSP), which can be produced by marine bacteria and phytoplankton. Polar oceans, which represent about one fifth of Earth’s surface, contribute significantly to the global oceanic DMS sea-air flux. However, a global overview of DMS and DMSP cycling in polar oceans is still lacking and the key genes and the microbial assemblages involved in DMSP/DMS transformation remain to be fully unveiled.

Results: Here, we systematically investigated the biogeographic traits of 16 key microbial enzymes involved in DMS/DMSP cycling in 60 metagenomic samples from polar waters, together with 174 metagenome and 151 metatranscriptomes from non-polar Tara Ocean dataset. Our analyses suggest that intense DMS/DMSP cycling occurs in the polar oceans. DMSP demethylase (DmdA), DMSP lyases (DddD, DddP, and DddK), and trimethylamine monooxygenase (Tmm, which oxidizes DMS to dimethylsulfoxide) were the most prevalent bacterial genes involved in global DMS/DMSP cycling. Alphaproteobacteria (Pelagibacterales) and Gammaproteobacteria appear to play prominent roles in DMS/DMSP cycling in polar oceans. The phenomenon that multiple DMS/DMSP cycling genes co-occurred in the same bacterial genome was also observed in metagenome assembled genomes (MAGs) from polar oceans. The microbial assemblages from the polar oceans were significantly correlated with water depth rather than geographic distance, suggesting the differences of habitats between surface and deep waters rather than dispersal limitation are the key factors shaping microbial assemblages involved in DMS/DMSP cycling in polar oceans.

Conclusions: Overall, this study provides a global overview of the biogeographic traits of known bacterial genes involved in DMS/DMSP cycling from the Arctic and Antarctic oceans, laying a solid foundation for further studies of DMS/DMSP cycling in polar ocean microbiome at the enzymatic, metabolic, and processual levels.
Original languageEnglish
Article number207
Number of pages17
JournalMicrobiome
Volume9
DOIs
Publication statusPublished - 16 Oct 2021

Bibliographical note

Funding:
This work was supported by the National Key Research and Development Program of China (2016YFA0601303, 2018YFC1406700), the National Science Foundation of China (grants 91851205, 31630012, U1706207, 42076229, 31870052, 31800107, 91751101, 41706152, and 41676180), the Fundamental Research Funds for the Central Universities (202172002), the Major Scientific and Technological Innovation Project (MSTIP) of Shandong Province (2019JZZY010817), the Program of Shandong for Taishan Scholars (tspd20181203), and AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology (2017ASTCP-OS14 and QNLM2016ORP0310).

Availability of data and materials

All metagenomic datasets have been deposited in the NCBI database (BioProject accession no. PRJNA588686). The 214 MAGs have been submitted to figshare (https://figshare.com/s/fd5f60b5da7a63aaa74b) and the GenBank database (BioProject accession no. SUB7116349).

Keywords

  • Polar oceans
  • DMS/DMSP cycling
  • Geographic distribution
  • Phylogenetic diversity

Fingerprint

Dive into the research topics of 'Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans'. Together they form a unique fingerprint.

Cite this