Abstract
The confined interior region of carbon nanotubes has proved to be an effective "nano-test-tube" to conduct chemical reactions in a restricted volume. It also benefits from being thin and relatively transparent to electrons, enabling structural characterization using high-resolution transmission electron microscopy. This permits real-time monitoring of chemical reactions with atomic resolution. Here, we have studied the dynamics of single Pr atoms released from Pr2@C72 metallofullerenes. We show that the Pr atoms form small nanoclusters that subsequently coalesce to ordered, stable nanocrystals within the confines of a carbon nanotube. This process has been tracked in situ with atomic-resolution using low-voltage aberration-corrected high-resolution transmission electron microscopy. We reveal that nanocrystal formation within a nanotube does not generally occur by the addition of single atoms to one pre-existing cluster but rather through aggregation of several smaller clusters. These results provide some of the deepest insights into the dynamics of single-atom behavior in the solid state.
Original language | English |
---|---|
Pages (from-to) | 1410-1417 |
Number of pages | 8 |
Journal | ACS Nano |
Volume | 5 |
Issue number | 2 |
DOIs | |
Publication status | Published - 22 Feb 2011 |