Abstract
The highly water insoluble N-hexadecyl-pyridinium-4-boronic acid hexafluorophosphate is synthesised and investigated for sensor applications. This amphiphilic molecule is immobilised by evaporation of an acetonitrile solution at a basal plane pyrolytic graphite (HOPG) electrode surface and is shown to provide a monolayer film. By varying the amount of deposit partial or full coverage can be achieved. The N-hexadecyl-pyridinium-4-boronic acid hexafluorophosphate monolayer acts as an active receptor for 1,2-dihydroxy-benzene (catechol) derivatives in aqueous media. The ability to bind alizarin red S is investigated and the Langmuirian binding constant determined as a function of pH. It is shown that the immobilised boronic acid monolayer acts as sensor film for a wider range of catechols. A comparison of Langmuirian binding constants for alizarin red S (1.4 x 10(5) mol(-1) dm(3)), catechol (8.4 x 10(4) mol(-1) dm(3)), caffeic acid (7.5 x 10(4) mol(-1) dm(3)), dopamine (1.0 x 10(4) mol(-1) dm(3)), and L-dopa (8 x 10(3) mol(-1) dm(3)) reveals that a combination of hydrophobicity and electrostatic interaction causes considerable selectivity effects.
Original language | English |
---|---|
Pages (from-to) | 8305-8310 |
Number of pages | 6 |
Journal | Journal of Materials Chemistry |
Volume | 20 |
Issue number | 38 |
DOIs | |
Publication status | Published - 1 Jan 2010 |