Artificial neural network tools for predicting the functional response of ultrafast laser textured/structured surfaces

Luca Baronti, Aleksandra Michalek, Marco Castellani, Pavel Penchev, Tian Long See, Stefan Dimov

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
40 Downloads (Pure)


Artificial Neural Networks (ANNs) are well-established knowledge acquisition systems with proven capacity for learning and generalisation. Therefore, ANNs are widely applied to solve engineering problems and are often used in laser-based manufacturing applications. There are different pattern recognition and control problems where ANNs can be effectively applied, and one of them is laser structuring/texturing for surface functionalisation, e.g. in generating Laser-Induced Periodic Surface Structures (LIPSS). They are a particular type of sub-micron structures that are very sensitive to changes in laser processing conditions due to processing disturbances like varying Focal Offset Distance (FOD) and/or Beam Incident Angle (BIA) during the laser processing of 3D surfaces. As a result, the functional response of LIPSS-treated surfaces might be affected, too, and typically needs to be analysed with time-consuming experimental tests. Also, there is a lack of sufficient process monitoring and quality control tools available for LIPSS-treated surfaces that could identify processing patterns and interdependences. These tools are needed to determine whether the LIPSS generation process is in control and consequently whether the surface’s functional performance is still retained. In this research, an ANN-based approach is proposed for predicting the functional response of ultrafast laser structured/textured surfaces. It was demonstrated that the processing disturbances affecting the LIPSS treatments can be classified, and then, the surface response, namely wettability, of processed surfaces can be predicted with a very high accuracy using the developed ANN tools for pre- and post-processing of LIPSS topography data, i.e. their areal surface roughness parameters. A Generative Adversarial Network (GAN) was applied as a pre-processing tool to significantly reduce the number of required experimental data. The number of areal surface roughness parameters needed to fully characterise the functional response of a surface was minimised using a combination of feature selection methods. Based on statistical analysis and evolutionary optimisation, these methods narrowed down the initial set of 21 elements to a group of 10 and 6 elements, according to redundancy and relevance criteria, respectively. The validation of ANN tools, using the salient surface parameters, yielded accuracy close to 85% when applied for identification of processing disturbances, while the wettability was predicted within an r.m.s. error of 11 degrees, equivalent to the static water contact angle (CA) measurement uncertainty.

Original languageEnglish
Pages (from-to)3501-3516
Number of pages16
JournalThe International Journal of Advanced Manufacturing Technology
Issue number5-6
Early online date7 Jan 2022
Publication statusPublished - Mar 2022

Bibliographical note

Funding Information:
The work was carried out within the H2020 FoF program “High-Impact Injection Moulding Platform for mass-production of 3D and/or large micro-structured surfaces with Antimicrobial, Self-cleaning, Anti-scratch, Anti-squeak and Aesthetic functionalities” (HIMALAIA) and of the UKIERI DST program “Surface functionalization for food, packaging, and healthcare applications”. Also, the authors would like to thank the Manufacturing Technology Center (MTC) for the financial support of Aleksandra Michalek’s Ph.D. research.

Publisher Copyright:
© 2021, The Author(s).


  • Artificial neural network
  • Feature selection
  • General adversarial network
  • Laser surface texturing
  • Laser-induced periodic surface structures

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Mechanical Engineering
  • Computer Science Applications
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Artificial neural network tools for predicting the functional response of ultrafast laser textured/structured surfaces'. Together they form a unique fingerprint.

Cite this