Architectures of lipid transport systems for the bacterial outer membrane

Damian C. Ekiert, Gira Bhabha, Georgia Isom, Garrett Greenan, Sergey Ovchinnikov, Ian Henderson, Jeffery S. Cox, Ronald D. Vale

Research output: Contribution to journalArticlepeer-review

87 Citations (Scopus)


How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles.
Original languageEnglish
Pages (from-to)273-285.e17
Issue number2
Publication statusPublished - 6 Apr 2017


  • Cell Membrane/chemistry
  • Crystallography, X-Ray
  • Escherichia coli/chemistry
  • Escherichia coli Proteins/chemistry
  • Membrane Proteins/chemistry
  • Microscopy, Electron
  • Models, Molecular
  • Multiprotein Complexes/chemistry


Dive into the research topics of 'Architectures of lipid transport systems for the bacterial outer membrane'. Together they form a unique fingerprint.

Cite this