Approximate light cone effects in a nonrelativistic quantum field theory after a local quench

Bruno Bertini*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We study the spreading of correlations after a local quench in a nonrelativistic quantum field theory. We focus on noninteracting nonrelativistic fermions and study the time evolution after two identical systems in their ground states are suddenly joined together with a localized impurity at the junction. We find that, even if the quasiparticles of the system have unbounded dispersion, the correlations show light cone effects. We carry out a detailed study of these effects by developing an accurate asymptotic expansion of the two-point function and determining exactly the density of particles at any time after the quench. In particular, we find that the width of the light cone region is t1/2. The structure of correlations, however, does not show a pure light cone form: "superluminal corrections" are much larger than in the bounded-dispersion case. These findings can be explained by inspecting the structure of excitations generated by the initial state. We show that a similar picture also emerges in the presence of a harmonic trapping potential and when more than two systems are suddenly joined at a single point.

Original languageEnglish
Article number075153
JournalPhysical Review B
Volume95
Issue number7
DOIs
Publication statusPublished - 27 Feb 2017

Bibliographical note

Publisher Copyright:
© 2017 American Physical Society.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Approximate light cone effects in a nonrelativistic quantum field theory after a local quench'. Together they form a unique fingerprint.

Cite this