TY - UNPB
T1 - Antibody-mediated depletion of human CLEC-2 in a novel humanised mouse model
AU - Brown, Helena C
AU - Beck, Sarah
AU - Navarro, Stefano
AU - Di, Ying
AU - Jerez, Eva M Soriano
AU - Kaczmarzyk, Jana
AU - Thomas, Steven G.
AU - Mirakaj, Valbona
AU - Watson, Steve P
AU - Nieswandt, Bernhard
AU - Stegner, David
PY - 2021/10/3
Y1 - 2021/10/3
N2 - Platelet C-type lectin-like receptor 2 (CLEC-2) has been proposed as a potential anti-thrombotic target as genetic or antibody-mediated receptor deficiency prevents occlusive thrombus formation in mice. This occurs through interaction with an unknown ligand as the endogenous ligand podoplanin is not present in the vasculature. However, the CLEC-2-podoplanin interaction does have an important role in tumour metastasis. There are currently no methods to test potential human therapeutics targeting CLEC-2, such as antibodies, in vivo. We have therefore generated and characterised a humanised CLEC-2 mouse (hCLEC-2KI) and developed a novel monoclonal anti-human CLEC-2 antibody, HEL1, for in vivo testing. hCLEC-2KI mice were phenotypically normal and had comparable platelet glycoprotein receptor expression, activation and aggregation to wildtype platelets. hCLEC-2KI mice had both comparable bleeding and vessel occlusion times to WT mice. Challenging hCLEC-2KI mice with HEL1 or a second monoclonal anti-hCLEC-2 antibody, AYP1, resulted in transient thrombocytopenia as well as CLEC-2 depletion for more than 2 weeks but had no effect on haemostasis. This illustrates the power of the humanised CLEC-2 mouse model in evaluating novel therapeutics in vivo, including antibodies that target CLEC-2, as well as the limited effect on haemostasis when targeting CLEC-2.
AB - Platelet C-type lectin-like receptor 2 (CLEC-2) has been proposed as a potential anti-thrombotic target as genetic or antibody-mediated receptor deficiency prevents occlusive thrombus formation in mice. This occurs through interaction with an unknown ligand as the endogenous ligand podoplanin is not present in the vasculature. However, the CLEC-2-podoplanin interaction does have an important role in tumour metastasis. There are currently no methods to test potential human therapeutics targeting CLEC-2, such as antibodies, in vivo. We have therefore generated and characterised a humanised CLEC-2 mouse (hCLEC-2KI) and developed a novel monoclonal anti-human CLEC-2 antibody, HEL1, for in vivo testing. hCLEC-2KI mice were phenotypically normal and had comparable platelet glycoprotein receptor expression, activation and aggregation to wildtype platelets. hCLEC-2KI mice had both comparable bleeding and vessel occlusion times to WT mice. Challenging hCLEC-2KI mice with HEL1 or a second monoclonal anti-hCLEC-2 antibody, AYP1, resulted in transient thrombocytopenia as well as CLEC-2 depletion for more than 2 weeks but had no effect on haemostasis. This illustrates the power of the humanised CLEC-2 mouse model in evaluating novel therapeutics in vivo, including antibodies that target CLEC-2, as well as the limited effect on haemostasis when targeting CLEC-2.
UR - https://ashpublications.org/bloodadvances/article/doi/10.1182/bloodadvances.2021006463/486457/Antibody-mediated-depletion-of-human-CLEC-2-in-a
U2 - 10.1101/2021.10.03.462933
DO - 10.1101/2021.10.03.462933
M3 - Preprint
BT - Antibody-mediated depletion of human CLEC-2 in a novel humanised mouse model
PB - bioRxiv
ER -