Analysis and adaptive mitigation scheme of low-frequency oscillations in railway traction power systems

Xiaofeng Jiang, Haitao Hu, Xiaowei Yang, Zhengyou He, Qingquan Qian, Pietro Tricoli

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
329 Downloads (Pure)


The diffusion of modern electric trains equipped with high-power voltage-source converters has introduced new dynamic interaction with the AC traction power system that may create unexpected low-frequency oscillations. This paper presents for the first time a detailed analysis of the operating condition of electric trains and traction network, revealing that specific changes of operating condition of the train-network system are responsible for the oscillations and may lead to instability. The study is carried out with an analytical dynamic model considering the transient direct current control and focuses on evaluating how the mismatch between the parameters of the controller and the controlled object of trainnetwork system affects system dynamic and stability. It is shown that the retuning of controller parameters improves the dynamic performance and stability of the trainnetwork system, and hence an adaptive mitigation method is proposed to mitigate low-frequency oscillations adopting a new design of the controller with minimal change and cost to the original system, which provides a simple solution to guide engineering practice in railway traffic. Simulations and experimental results are presented to fully validate the proposed method.
Original languageEnglish
JournalIEEE Transactions on Transportation Electrification
Early online date17 Jul 2019
Publication statusE-pub ahead of print - 17 Jul 2019


  • Train-network System
  • low-frequency oscillation
  • mismatch
  • parameters tuning
  • adaptive mitigation scheme


Dive into the research topics of 'Analysis and adaptive mitigation scheme of low-frequency oscillations in railway traction power systems'. Together they form a unique fingerprint.

Cite this