An optimized design of a parallel robot for gait training

Marco Maddalena, Mozafar Saadat, Alireza Rastegarpanah, Rui C.V. Loureiro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The guidelines for enhancing robot-assisted training for post-stroke survivors head towards increasing exercise realism and variability; in particular lower limb rehabilitation needs the patient to feel challenged to adapt his locomotion and dynamic balance capabilities to different virtual ground scenarios. This paper proposes a design for a robot whose end-effector acts as a footplate to be in permanent contact with the user's foot during practice: the structure is such that it enables the user's foot to rotate around three axis, differently from what is currently available in the research for gait training; the parallel kinematic structure and the dimensional synthesis allow a suitable range of motion and aim at limiting device mass, footprint and reaction forces on the actuators when rendering virtual ground. The employed methodology has been validated using ground reaction forces data relative to stroke survivors.

Original languageEnglish
Title of host publication2017 International Conference on Rehabilitation Robotics, ICORR 2017
EditorsArash Ajoudani, Panagiotis Artemiadis, Philipp Beckerle, Giorgio Grioli, Olivier Lambercy, Katja Mombaur, Domen Novak, Georg Rauter, Carlos Rodriguez Guerrero, Gionata Salvietti, Farshid Amirabdollahian, Sivakumar Balasubramanian, Claudio Castellini, Giovanni Di Pino, Zhao Guo, Charmayne Hughes, Fumiya Iida, Tommaso Lenzi, Emanuele Ruffaldi, Fabrizio Sergi, Gim Song Soh, Marco Caimmi, Leonardo Cappello, Raffaella Carloni, Tom Carlson, Maura Casadio, Martina Coscia, Dalia De Santis, Arturo Forner-Cordero, Matthew Howard, Davide Piovesan, Adriano Siqueira, Frank Sup, Masia Lorenzo, Manuel Giuseppe Catalano, Hyunglae Lee, Carlo Menon, Stanisa Raspopovic, Mo Rastgaar, Renaud Ronsse, Edwin van Asseldonk, Bram Vanderborght, Madhusudhan Venkadesan, Matteo Bianchi, David Braun, Sasha Blue Godfrey, Fulvio Mastrogiovanni, Andrew McDaid, Stefano Rossi, Jacopo Zenzeri, Domenico Formica, Nikolaos Karavas, Laura Marchal-Crespo, Kyle B. Reed, Nevio Luigi Tagliamonte, Etienne Burdet, Angelo Basteris, Domenico Campolo, Ashish Deshpande, Venketesh Dubey, Asif Hussain, Vittorio Sanguineti, Ramazan Unal, Glauco Augusto de Paula Caurin, Yasuharu Koike, Stefano Mazzoleni, Hyung-Soon Park, C. David Remy, Ludovic Saint-Bauzel, Nikos Tsagarakis, Jan Veneman, Wenlong Zhang
PublisherIEEE Computer Society
Pages418-423
Number of pages6
ISBN (Electronic)9781538622964
DOIs
Publication statusPublished - 11 Aug 2017
Event2017 International Conference on Rehabilitation Robotics, ICORR 2017 - London, United Kingdom
Duration: 17 Jul 201720 Jul 2017

Publication series

NameIEEE International Conference on Rehabilitation Robotics
ISSN (Print)1945-7898
ISSN (Electronic)1945-7901

Conference

Conference2017 International Conference on Rehabilitation Robotics, ICORR 2017
Country/TerritoryUnited Kingdom
CityLondon
Period17/07/1720/07/17

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Rehabilitation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An optimized design of a parallel robot for gait training'. Together they form a unique fingerprint.

Cite this