An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair

N. Kohli, Karina T. Wright, R. L. Sammons, L. Jeys, M. Snow, W. E. B. Johnson

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Aim: To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair.

Methods: Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively.

Results: A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro-Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source.

Conclusion: Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue.
Original languageEnglish
Pages (from-to)252-263
JournalCartilage
Volume6
Issue number4
DOIs
Publication statusPublished - 1 Oct 2015

Fingerprint

Dive into the research topics of 'An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair'. Together they form a unique fingerprint.

Cite this