TY - JOUR
T1 - An estimation model on electricity consumption of new metro stations
AU - Yu, Zhao
AU - Bai, Yun
AU - Fu, Qian
AU - Chen, Yao
AU - Mao, Baohua
PY - 2020/1/30
Y1 - 2020/1/30
N2 - Electricity consumption of metro stations increases sharply with expansion of a metro network and this has been a growing cause for concern. Based on relevant historical data from existing metro stations, this paper proposes a support vector regression (SVR) model to estimate daily electricity consumption of a newly constructed metro station. The model considers some major factors influencing the electricity consumption of metro station in terms of both the interior design scheme of a station (e.g., layout of the station and allocation of facilities) and external factors (e.g., passenger volume, air temperature and relative humidity). A genetic algorithm with five-fold cross-validation is used to optimize the hyper-parameters of the SVR model in order to improve its accuracy in estimating the electricity consumption of a metro station (ECMS). With the optimized hyper-parameters, results from case studies on the Beijing Subway showed that the estimating accuracy of the proposed SVR model could reach up to 95% and the correlation coefficient was 0.89. It was demonstrated that the proposed model could outperform the traditional methods which use a back-propagation neural network or multivariate linear regression. The method presented in this paper can be an adequate tool for estimating the ECMS and should further assist in the delivery of new, energy-efficient metro stations.
AB - Electricity consumption of metro stations increases sharply with expansion of a metro network and this has been a growing cause for concern. Based on relevant historical data from existing metro stations, this paper proposes a support vector regression (SVR) model to estimate daily electricity consumption of a newly constructed metro station. The model considers some major factors influencing the electricity consumption of metro station in terms of both the interior design scheme of a station (e.g., layout of the station and allocation of facilities) and external factors (e.g., passenger volume, air temperature and relative humidity). A genetic algorithm with five-fold cross-validation is used to optimize the hyper-parameters of the SVR model in order to improve its accuracy in estimating the electricity consumption of a metro station (ECMS). With the optimized hyper-parameters, results from case studies on the Beijing Subway showed that the estimating accuracy of the proposed SVR model could reach up to 95% and the correlation coefficient was 0.89. It was demonstrated that the proposed model could outperform the traditional methods which use a back-propagation neural network or multivariate linear regression. The method presented in this paper can be an adequate tool for estimating the ECMS and should further assist in the delivery of new, energy-efficient metro stations.
U2 - 10.1155/2020/3423659
DO - 10.1155/2020/3423659
M3 - Article
SN - 0197-6729
VL - 2020
JO - Journal of Advanced Transportation
JF - Journal of Advanced Transportation
M1 - 3423659
ER -