TY - JOUR
T1 - Amateur runners more influenced than elite runners by temperature and air pollution during the UK's Great North Run half marathon
AU - Hodgson, James R
AU - Chapman, Lee
AU - Pope, Francis D
N1 - Copyright © 2022 The Authors.
PY - 2022/10/10
Y1 - 2022/10/10
N2 - The short- and long-term impacts of air pollution on human health are well documented and include cardiovascular, neurological, immune system and developmental damage. Additionally, the irritant qualities of air pollutants can cause respiratory and cardiovascular distress. This can be heightened during exercise and especially so for those with respiratory conditions such as asthma. Meteorological conditions have also been shown to adversely impact athletic performance; but research has mostly examined the impact of pollution and meteorology on marathon times or running under laboratory settings. This study focuses on the half marathon distance (13.1 miles/21.1 km) and utilises the Great North Run held in Newcastle-upon-Tyne, England, between 2006 and 2019. Local meteorological (temperature, relative humidity, heat index and wind speed) and air quality (ozone, nitrogen dioxide and PM2.5) data is used in conjunction with finishing times of the quickest and slowest amateur participants, along with the elite field, to determine the extent to which each group is influenced in real-world conditions. Results show that increased temperatures, heat index and ozone concentrations are significantly detrimental to amateur half marathon performances. The elite field meanwhile is influenced by higher ozone concentrations. It is thought that the increased exposure time to the environmental conditions contributes to this greater decrease in performance for the slowest participants. For elite athletes that are performing closer to their maximal capacity (VO2 max), the higher ozone concentrations likely results in respiratory irritation and decreased performance. Nitrogen dioxide and PM2.5 pollution showed no significant relationship with finishing times. These results provide additional insight into the environmental effects on exercise, which is particularly important under the increasing effects climate change and regional air pollution. This study can be used to inform event organisation and start times for both mass participation and major elite events with the aim to reduce heat- and pollution-related incidents.
AB - The short- and long-term impacts of air pollution on human health are well documented and include cardiovascular, neurological, immune system and developmental damage. Additionally, the irritant qualities of air pollutants can cause respiratory and cardiovascular distress. This can be heightened during exercise and especially so for those with respiratory conditions such as asthma. Meteorological conditions have also been shown to adversely impact athletic performance; but research has mostly examined the impact of pollution and meteorology on marathon times or running under laboratory settings. This study focuses on the half marathon distance (13.1 miles/21.1 km) and utilises the Great North Run held in Newcastle-upon-Tyne, England, between 2006 and 2019. Local meteorological (temperature, relative humidity, heat index and wind speed) and air quality (ozone, nitrogen dioxide and PM2.5) data is used in conjunction with finishing times of the quickest and slowest amateur participants, along with the elite field, to determine the extent to which each group is influenced in real-world conditions. Results show that increased temperatures, heat index and ozone concentrations are significantly detrimental to amateur half marathon performances. The elite field meanwhile is influenced by higher ozone concentrations. It is thought that the increased exposure time to the environmental conditions contributes to this greater decrease in performance for the slowest participants. For elite athletes that are performing closer to their maximal capacity (VO2 max), the higher ozone concentrations likely results in respiratory irritation and decreased performance. Nitrogen dioxide and PM2.5 pollution showed no significant relationship with finishing times. These results provide additional insight into the environmental effects on exercise, which is particularly important under the increasing effects climate change and regional air pollution. This study can be used to inform event organisation and start times for both mass participation and major elite events with the aim to reduce heat- and pollution-related incidents.
KW - Air quality
KW - Athletics
KW - Exercise performance
KW - Great North Run
KW - Meteorology
KW - Physical health
UR - http://www.scopus.com/inward/record.url?scp=85133451098&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2022.156825
DO - 10.1016/j.scitotenv.2022.156825
M3 - Article
C2 - 35752238
SN - 0048-9697
VL - 842
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 156825
ER -