TY - JOUR
T1 - Algorithm based smartphone apps to assess risk of skin cancer in adults
T2 - systematic review of diagnostic accuracy studies
AU - Freeman, Karoline
AU - Dinnes, Jacqueline
AU - Chuchu, Naomi
AU - Takwoingi, Yemisi
AU - Bayliss, Susan
AU - Matin, RN
AU - Jain, A
AU - Walter, Fiona M
AU - Williams, HC
AU - Deeks, Jon
N1 - Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
PY - 2020/2/10
Y1 - 2020/2/10
N2 - Objective To examine the validity and findings of studies that examine the accuracy of algorithm based smartphone applications ("apps") to assess risk of skin cancer in suspicious skin lesions. Design Systematic review of diagnostic accuracy studies. Data sources Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, CPCI, Zetoc, Science Citation Index, and online trial registers (from database inception to 10 April 2019). Eligibility criteria for selecting studies Studies of any design that evaluated algorithm based smartphone apps to assess images of skin lesions suspicious for skin cancer. Reference standards included histological diagnosis or follow-up, and expert recommendation for further investigation or intervention. Two authors independently extracted data and assessed validity using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2 tool). Estimates of sensitivity and specificity were reported for each app. Results Nine studies that evaluated six different identifiable smartphone apps were included. Six verified results by using histology or follow-up (n=725 lesions), and three verified results by using expert recommendations (n=407 lesions). Studies were small and of poor methodological quality, with selective recruitment, high rates of unevaluable images, and differential verification. Lesion selection and image acquisition were performed by clinicians rather than smartphone users. Two CE (Conformit Europenne) marked apps are available for download. SkinScan was evaluated in a single study (n=15, five melanomas) with 0% sensitivity and 100% specificity for the detection of melanoma. SkinVision was evaluated in two studies (n=252, 61 malignant or premalignant lesions) and achieved a sensitivity of 80% (95% confidence interval 63% to 92%) and a specificity of 78% (67% to 87%) for the detection of malignant or premalignant lesions. Accuracy of the SkinVision app verified against expert recommendations was poor (three studies). Conclusions Current algorithm based smartphone apps cannot be relied on to detect all cases of melanoma or other skin cancers. Test performance is likely to be poorer than reported here when used in clinically relevant populations and by the intended users of the apps. The current regulatory process for awarding the CE marking for algorithm based apps does not provide adequate protection to the public. Systematic review registration PROSPERO CRD42016033595.
AB - Objective To examine the validity and findings of studies that examine the accuracy of algorithm based smartphone applications ("apps") to assess risk of skin cancer in suspicious skin lesions. Design Systematic review of diagnostic accuracy studies. Data sources Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, CPCI, Zetoc, Science Citation Index, and online trial registers (from database inception to 10 April 2019). Eligibility criteria for selecting studies Studies of any design that evaluated algorithm based smartphone apps to assess images of skin lesions suspicious for skin cancer. Reference standards included histological diagnosis or follow-up, and expert recommendation for further investigation or intervention. Two authors independently extracted data and assessed validity using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2 tool). Estimates of sensitivity and specificity were reported for each app. Results Nine studies that evaluated six different identifiable smartphone apps were included. Six verified results by using histology or follow-up (n=725 lesions), and three verified results by using expert recommendations (n=407 lesions). Studies were small and of poor methodological quality, with selective recruitment, high rates of unevaluable images, and differential verification. Lesion selection and image acquisition were performed by clinicians rather than smartphone users. Two CE (Conformit Europenne) marked apps are available for download. SkinScan was evaluated in a single study (n=15, five melanomas) with 0% sensitivity and 100% specificity for the detection of melanoma. SkinVision was evaluated in two studies (n=252, 61 malignant or premalignant lesions) and achieved a sensitivity of 80% (95% confidence interval 63% to 92%) and a specificity of 78% (67% to 87%) for the detection of malignant or premalignant lesions. Accuracy of the SkinVision app verified against expert recommendations was poor (three studies). Conclusions Current algorithm based smartphone apps cannot be relied on to detect all cases of melanoma or other skin cancers. Test performance is likely to be poorer than reported here when used in clinically relevant populations and by the intended users of the apps. The current regulatory process for awarding the CE marking for algorithm based apps does not provide adequate protection to the public. Systematic review registration PROSPERO CRD42016033595.
KW - Algorithms
KW - Biopsy
KW - Dermoscopy/instrumentation
KW - False Negative Reactions
KW - False Positive Reactions
KW - Humans
KW - Melanoma/diagnosis
KW - Mobile Applications
KW - Reproducibility of Results
KW - Risk Assessment/methods
KW - Skin Neoplasms/diagnosis
KW - Skin/diagnostic imaging
KW - Smartphone
UR - http://www.scopus.com/inward/record.url?scp=85079238569&partnerID=8YFLogxK
U2 - 10.1136/bmj.m127
DO - 10.1136/bmj.m127
M3 - Article
C2 - 32041693
SN - 0959-8138
VL - 368
JO - BMJ
JF - BMJ
M1 - m127
ER -