TY - JOUR
T1 - Age-dependent Pavlovian biases influence motor decision-making
AU - Chen, Xiuli
AU - Rutledge, Robb B
AU - Brown, Harriet R
AU - Dolan, Raymond J
AU - Bestmann, Sven
AU - Galea, Joseph M
PY - 2018/7/6
Y1 - 2018/7/6
N2 - Motor decision-making is an essential component of everyday life which requires weighing potential rewards and punishments against the probability of successfully executing an action. To achieve this, humans rely on two key mechanisms; a flexible, instrumental, value-dependent process and a hardwired, Pavlovian, value-independent process. In economic decision-making, age-related decline in risk taking is explained by reduced Pavlovian biases that promote action toward reward. Although healthy ageing has also been associated with decreased risk-taking in motor decision-making, it is currently unknown whether this is a result of changes in Pavlovian biases, instrumental processes or a combination of both. Using a newly established approach-avoidance computational model together with a novel app-based motor decision-making task, we measured sensitivity to reward and punishment when participants (n = 26,532) made a 'go/no-go' motor gamble based on their perceived ability to execute a complex action. We show that motor decision-making can be better explained by a model with both instrumental and Pavlovian parameters, and reveal age-related changes across punishment- and reward-based instrumental and Pavlovian processes. However, the most striking effect of ageing was a decrease in Pavlovian attraction towards rewards, which was associated with a reduction in optimality of choice behaviour. In a subset of participants who also played an independent economic decision-making task (n = 17,220), we found similar decision-making tendencies for motor and economic domains across a majority of age groups. Pavlovian biases, therefore, play an important role in not only explaining motor decision-making behaviour but also the changes which occur through normal ageing. This provides a deeper understanding of the mechanisms which shape motor decision-making across the lifespan.
AB - Motor decision-making is an essential component of everyday life which requires weighing potential rewards and punishments against the probability of successfully executing an action. To achieve this, humans rely on two key mechanisms; a flexible, instrumental, value-dependent process and a hardwired, Pavlovian, value-independent process. In economic decision-making, age-related decline in risk taking is explained by reduced Pavlovian biases that promote action toward reward. Although healthy ageing has also been associated with decreased risk-taking in motor decision-making, it is currently unknown whether this is a result of changes in Pavlovian biases, instrumental processes or a combination of both. Using a newly established approach-avoidance computational model together with a novel app-based motor decision-making task, we measured sensitivity to reward and punishment when participants (n = 26,532) made a 'go/no-go' motor gamble based on their perceived ability to execute a complex action. We show that motor decision-making can be better explained by a model with both instrumental and Pavlovian parameters, and reveal age-related changes across punishment- and reward-based instrumental and Pavlovian processes. However, the most striking effect of ageing was a decrease in Pavlovian attraction towards rewards, which was associated with a reduction in optimality of choice behaviour. In a subset of participants who also played an independent economic decision-making task (n = 17,220), we found similar decision-making tendencies for motor and economic domains across a majority of age groups. Pavlovian biases, therefore, play an important role in not only explaining motor decision-making behaviour but also the changes which occur through normal ageing. This provides a deeper understanding of the mechanisms which shape motor decision-making across the lifespan.
U2 - 10.1371/journal.pcbi.1006304
DO - 10.1371/journal.pcbi.1006304
M3 - Article
C2 - 29979685
SN - 1553-734X
VL - 14
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 7
M1 - e1006304
ER -