A system-level game semantics

Dan R. Ghica, Nikos Tzevelekos

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Game semantics is a trace-like denotational semantics for programming languages where the notion of legal observable behaviour of a term is defined combinatorially, by means of rules of a game between the term (the Proponent) and its context (the Opponent). In general, the richer the computational features a language has the less constrained the rules of the semantic game. In this paper we consider the consequences of taking this relaxation of rules to the limit, by granting the Opponent omnipotence, that is, permission to play any move without combinatorial restrictions. However, we impose an epistemic restriction by not granting Opponent omniscience, so that Proponent can have undisclosed secret moves. We introduce a basic C-like programming language and we define such a semantic model for it. We argue that the resulting semantics is an appealingly simple combination of operational and game semantics and we show how certain traces explain system-level attacks, i.e. plausible attacks that are realisable outside of the programming language itself. We also show how allowing Proponent to have secrets ensures that some desirable equivalences in the programming language are preserved.

Original languageEnglish
Pages (from-to)191-211
Number of pages21
JournalElectronic Notes in Theoretical Computer Science
Volume286
DOIs
Publication statusPublished - 24 Sept 2012

Keywords

  • Game semantics
  • Omnipotent opponent
  • Omniscient opponent

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'A system-level game semantics'. Together they form a unique fingerprint.

Cite this