TY - JOUR
T1 - A study into the layers of automated decision-making: emergent normative and legal aspects of deep learning
AU - Karanasiou, Argyro P.
AU - Pinotsis, Dimitris A.
PY - 2017/3
Y1 - 2017/3
N2 - The paper dissects the intricacies of automated decision making (ADM) and urges for refining the current legal definition of artificial intelligence (AI) when pinpointing the role of algorithms in the advent of ubiquitous computing, data analytics and deep learning. Whilst coming up with a toolkit to measure algorithmic determination in automated/semi-automated tasks might be proven to be a tedious task for the legislator, our main aim here is to explain how a thorough understanding of the layers of ADM could be a first good step towards this direction: AI operates on a formula based on several degrees of automation employed in the interaction between the programmer, the user, and the algorithm. The paper offers a fresh look at AI, which exposes certain vulnerabilities in its current legal interpretation. To highlight this argument, analysis proceeds in two parts: Part 1 strives to provide a taxonomy of the various levels of automation that reflects distinct degrees of human–machine interaction. Part 2 further discusses the intricate nature of AI algorithms and considers how one can utilize observed patterns in acquired data. Finally, the paper explores the legal challenges that result from user empowerment and the requirement for data transparency.
AB - The paper dissects the intricacies of automated decision making (ADM) and urges for refining the current legal definition of artificial intelligence (AI) when pinpointing the role of algorithms in the advent of ubiquitous computing, data analytics and deep learning. Whilst coming up with a toolkit to measure algorithmic determination in automated/semi-automated tasks might be proven to be a tedious task for the legislator, our main aim here is to explain how a thorough understanding of the layers of ADM could be a first good step towards this direction: AI operates on a formula based on several degrees of automation employed in the interaction between the programmer, the user, and the algorithm. The paper offers a fresh look at AI, which exposes certain vulnerabilities in its current legal interpretation. To highlight this argument, analysis proceeds in two parts: Part 1 strives to provide a taxonomy of the various levels of automation that reflects distinct degrees of human–machine interaction. Part 2 further discusses the intricate nature of AI algorithms and considers how one can utilize observed patterns in acquired data. Finally, the paper explores the legal challenges that result from user empowerment and the requirement for data transparency.
U2 - 10.1080/13600869.2017.1298499
DO - 10.1080/13600869.2017.1298499
M3 - Article
SN - 1360-0869
VL - 31
SP - 170
EP - 187
JO - International Review of Law, Computers & Technology
JF - International Review of Law, Computers & Technology
IS - 2
ER -