TY - JOUR
T1 - A streaming-potential-based microfluidic measurement of surface charge at immiscible liquid-liquid interface
AU - Alizadeh, Amer
AU - Huang, Yunfan
AU - Liu, Fanli
AU - Daiguji, Hirofumi
AU - Wang, Moran
PY - 2023/6/1
Y1 - 2023/6/1
N2 - Surface charging at immiscible liquid-liquid interface is essential to the emulsion stability, surfactant adsorption, and various engineering applications such as drug delivery and mineral flotation. However, droplet electrophoresis, as a widely-used electrokinetic method to measure the surface charge density, has various limitations in physical modeling and sample preparation. In this work, an alternative experimental method based on streaming potential setup is proposed. A Y-Y shaped microchannel was used to make a flat and stable liquid-liquid interface. The inner wall was coated with polymer to suppress the interference of the solid-liquid interfacial electrokinetics in the liquid-liquid one. The experimental setup was first verified by revisiting the aqueous solution-silicon surface charging, after which the surfactant-free decane-KCl solution interface charging was investigated. The negative surface charge at the decane-KCl solution interface is confirmed and found to increase when increasing the pH. This result is compatible with the probable charging mechanism that the acquired negative surface charge results from hydroxyl ion adsorption onto the interface. The proposed method enables the simplicity and flexibility for further side-by-side studies on the liquid-liquid interface charging mechanism and will inspire the quantitative macroscopic interfacial modeling for numerous scenarios, such as the droplet electrophoresis and interfacial electro-hydrodynamics.
AB - Surface charging at immiscible liquid-liquid interface is essential to the emulsion stability, surfactant adsorption, and various engineering applications such as drug delivery and mineral flotation. However, droplet electrophoresis, as a widely-used electrokinetic method to measure the surface charge density, has various limitations in physical modeling and sample preparation. In this work, an alternative experimental method based on streaming potential setup is proposed. A Y-Y shaped microchannel was used to make a flat and stable liquid-liquid interface. The inner wall was coated with polymer to suppress the interference of the solid-liquid interfacial electrokinetics in the liquid-liquid one. The experimental setup was first verified by revisiting the aqueous solution-silicon surface charging, after which the surfactant-free decane-KCl solution interface charging was investigated. The negative surface charge at the decane-KCl solution interface is confirmed and found to increase when increasing the pH. This result is compatible with the probable charging mechanism that the acquired negative surface charge results from hydroxyl ion adsorption onto the interface. The proposed method enables the simplicity and flexibility for further side-by-side studies on the liquid-liquid interface charging mechanism and will inspire the quantitative macroscopic interfacial modeling for numerous scenarios, such as the droplet electrophoresis and interfacial electro-hydrodynamics.
U2 - 10.1016/j.ijmecsci.2023.108200
DO - 10.1016/j.ijmecsci.2023.108200
M3 - Article
SN - 0020-7403
VL - 247
JO - International Journal of Mechanical Sciences
JF - International Journal of Mechanical Sciences
M1 - 108200
ER -