Projects per year
Abstract
Although there are many evolutionary algorithms (EAs) for solving constrained optimization problems, there are few rigorous theoretical analyses. This paper presents a time complexity analysis of EAs for solving constrained optimization. It is shown when the penalty coefficient is chosen properly, direct comparison between pairs of solutions using penalty fitness function is equivalent to that using the criteria "superiority of feasible point" or "superiority of objective function value." This paper analyzes the role of penalty coefficients in EAs in terms of time complexity. The results show that in some examples, EAs benefit greatly from higher penalty coefficients, while in other examples, EAs benefit from lower penalty coefficients. This paper also investigates the runtime of EAs for solving the 0-1 knapsack problem and the results indicate that the mean first hitting times ranges from a polynomial-time to an exponential time when different penalty coefficients are used.
Original language | English |
---|---|
Pages (from-to) | 608-619 |
Number of pages | 12 |
Journal | IEEE Transactions on Evolutionary Computation |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Oct 2007 |
Keywords
- evolutionary algorithms (EAs)
- 0-1 knapsack problems
- constrained optimization problem
- time complexity
Fingerprint
Dive into the research topics of 'A runtime analysis of evolutionary algorithms for constrained optimization problems'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Computational Complexity Analysis of Evoloutionary Algarithms.
Yao, X. (Principal Investigator) & Rowe, J. (Co-Investigator)
Engineering & Physical Science Research Council
1/05/05 → 31/10/08
Project: Research Councils