Abstract
The energy sector is undergoing a paradigm shift among all the stages, from generation to the consumer end. The affordable, flexible, secure supply–demand balance due to an increase in renewable energy sources (RESs) penetration, technological advancements in monitoring and control, and the active nature of distribution system components have led to the development of microgrid (MG) energy systems. The intermittency and uncertainty of RES, as well as the controllable nature of MG components such as different types of energy generation sources, energy storage systems, electric vehicles, heating, and cooling systems are required to deploy efficient energy management systems (EMSs). Multi-agent systems (MASs) and model predictive control (MPC) approaches have been widely used in recent studies and have characteristics that address most of the EMS challenges. The advantages of these methods are due to the independent characteristics and nature of MAS, the predictive nature of MPC, and their ability to provide affordable, flexible, and secure MG operation. Therefore, for the first time, this state-of-the-art review presents a classification of the MG control and optimization methods, their objectives, and help in understanding the MG operational and EMS challenges from the perspective of the energy trilemma (flexibility, affordability, and security). The control and optimization architectures achievable with MAS and MPC methods predominantly identified and discussed. Furthermore, future research recommendations in MG-EMS in terms of energy trilemma associated with MAS, MPC methods, stability, resiliency, scalability improvements, and algorithm developments are presented to benefit the research community.
Original language | English |
---|---|
Article number | 289 |
Number of pages | 34 |
Journal | Energies |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 27 Dec 2022 |
Bibliographical note
Funding Information:The authors wish to acknowledge funding from the Industrial Strategy Challenge Fund and Engineering and Physical Sciences Research Council, under a Grant EP/S016627/1, for the Active Building Centre research project.
Publisher Copyright:
© 2022 by the authors.
Keywords
- control and optimization
- energy management
- energy trilemma
- microgrid
- model predictive control
- multi-agent system
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering