Abstract
Sebum is a complex mixture of skin lipids responsible for lubrication, moisture retention and skin protection from external factors such as bacteria and fungi. The physicochemical properties of natural sebum are not well understood and are not easily accessible. Artificial sebum is widely used for sebum-related research such as dermal bioaccessibility, fingerprint production, dermatology, removal and sebum studies. It was found that the composition of artificial sebum affects the bioaccessibility of metals and drugs as well as the growth of some strains of bacteria. Squalene present in sebum was also found to be responsible for creating yellow stains on fabrics, whereas an increased concentration of fatty acids and triglycerides can lead to higher malodour of fabrics. Moreover, sebum and artificial sebum are poorly characterized with only 20 of 81 formulations characterized by certain techniques such as differential scanning calorimetry, nuclear magnetic resonance and thin-layer chromatography. This article reviews the artificial sebum formulations reported in the open literature between 1965 and 2023. We have discussed the compositions, uses and characterization techniques of artificial sebum used in the previous work and compared their properties to those of human sebum. A total of 81 artificial sebum formulations were found across the literature with 17 new formulations identified. The artificial sebum composition varies greatly between publications and there is no consistent formulation. There is a wide range of chemicals that are used as the main components of artificial sebum. We have highlighted the effect of chemical composition and individual compounds on the overall properties of the artificial sebum reported, and recommend that there is a great potential for creating personalized cosmetics and home care products once the characteristics of sebum are better understood.
Original language | English |
---|---|
Article number | 13022 |
Number of pages | 22 |
Journal | International Journal of Cosmetic Science |
Early online date | 9 Sept 2024 |
DOIs | |
Publication status | E-pub ahead of print - 9 Sept 2024 |