Abstract
Background
Glycomimetics are a diverse array of saccharide-inspired compounds, designed to mimic the bioactive functions of glycosaminoglycans. Therefore, glycomimetics represent a unique source of novel therapies to target aberrant signaling and protein interactions in a wide range of diseases. We investigated the protective effects of four newly synthesized small molecule glycomimetics against lipid-induced endothelial dysfunction, with an emphasis on nitric oxide (NO) and oxidative stress.
Methods
Four aromatic sugar mimetics were synthesized by the stepwise transformation of 2,5-dihydroxybenzoic acid to derivatives (C1–C4) incorporating sulfate groups to mimic the structure of heparan sulfate.
Results
Glycomimetic-treated human umbilical vein endothelial cells (HUVECs) were exposed to palmitic acid to model lipid-induced oxidative stress. Palmitate-induced impairment of NO production was restored by the glycomimetics, through activation of Akt/eNOS signaling. Furthermore, C1-C4 significantly inhibited palmitate-induced reactive oxygen species (ROS) production, lipid peroxidation, and activity and expression of NADPH oxidase. These effects were attributed to activation of the Nrf2/ARE pathway and downstream activation of cellular antioxidant and cytoprotective proteins. In ex vivo vascular reactivity studies, the glycomimetics (C1–C4) also demonstrated a significant improvement in endothelium-dependent relaxation and decreased ROS production and NADPH oxidase activity in isolated mouse thoracic aortic rings exposed to palmitate.
Conclusions
The small molecule glycomimetics, C1–C4, protect against lipid-induced endothelial dysfunction through up-regulation of Akt/eNOS and Nrf2/ARE signaling pathways. Thus, carbohydrate-derived therapeutics are a new class of glycomimetic drugs targeting endothelial dysfunction, regarded as the first line of defense against vascular complications in cardiovascular disease.
Glycomimetics are a diverse array of saccharide-inspired compounds, designed to mimic the bioactive functions of glycosaminoglycans. Therefore, glycomimetics represent a unique source of novel therapies to target aberrant signaling and protein interactions in a wide range of diseases. We investigated the protective effects of four newly synthesized small molecule glycomimetics against lipid-induced endothelial dysfunction, with an emphasis on nitric oxide (NO) and oxidative stress.
Methods
Four aromatic sugar mimetics were synthesized by the stepwise transformation of 2,5-dihydroxybenzoic acid to derivatives (C1–C4) incorporating sulfate groups to mimic the structure of heparan sulfate.
Results
Glycomimetic-treated human umbilical vein endothelial cells (HUVECs) were exposed to palmitic acid to model lipid-induced oxidative stress. Palmitate-induced impairment of NO production was restored by the glycomimetics, through activation of Akt/eNOS signaling. Furthermore, C1-C4 significantly inhibited palmitate-induced reactive oxygen species (ROS) production, lipid peroxidation, and activity and expression of NADPH oxidase. These effects were attributed to activation of the Nrf2/ARE pathway and downstream activation of cellular antioxidant and cytoprotective proteins. In ex vivo vascular reactivity studies, the glycomimetics (C1–C4) also demonstrated a significant improvement in endothelium-dependent relaxation and decreased ROS production and NADPH oxidase activity in isolated mouse thoracic aortic rings exposed to palmitate.
Conclusions
The small molecule glycomimetics, C1–C4, protect against lipid-induced endothelial dysfunction through up-regulation of Akt/eNOS and Nrf2/ARE signaling pathways. Thus, carbohydrate-derived therapeutics are a new class of glycomimetic drugs targeting endothelial dysfunction, regarded as the first line of defense against vascular complications in cardiovascular disease.
Original language | English |
---|---|
Pages (from-to) | 3311-3322 |
Number of pages | 12 |
Journal | Biochimica et Biophysica Acta (BBA) - General Subjects |
Volume | 1861 |
Issue number | 1 |
Early online date | 21 Aug 2016 |
DOIs | |
Publication status | Published - Jan 2017 |
Keywords
- Endothelial dysfunction
- Glycomimetics
- Heparan sulfate
- Oxidative stress
- Small molecule drug discovery