A novel automated approach for software effort estimation based on data augmentation

L. SONG, L.L. MINKU, X. YAO

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)
236 Downloads (Pure)

Abstract

Software effort estimation (SEE) usually suffers from data scarcity problem due to the expensive or long process of data collection. As a result, companies usually have limited projects for effort estimation, causing unsatisfactory prediction performance. Few studies have investigated strategies to generate additional SEE data to aid such learning. We aim to propose a synthetic data generator to address the data scarcity problem of SEE. Our synthetic generator enlarges the SEE data set size by slightly displacing some randomly chosen training examples. It can be used with any SEE method as a data preprocessor. Its effectiveness is justified with 6 state-of-the-art SEE models across 14 SEE data sets. We also compare our data generator against the only existing approach in the SEE literature. Experimental results show that our synthetic projects can significantly improve the performance of some SEE methods especially when the training data is insufficient. When they cannot significantly improve the prediction performance, they are not detrimental either. Besides, our synthetic data generator is significantly superior or perform similarly to its competitor in the SEE literature. Therefore, our data generator plays a non-harmful if not significantly beneficial effect on the SEE methods investigated in this paper. Therefore, it is helpful in addressing the data scarcity problem of SEE.
Original languageEnglish
Title of host publicationProceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018)
EditorsGary T. Leavens, Alessandro Garcia, Corina S. Păsăreanu
Place of PublicationNew York, NY
PublisherACM/IEEE
Pages468-479
Number of pages12
ISBN (Electronic)978-1-4503-5573-5
DOIs
Publication statusPublished - 26 Oct 2018
EventThe ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018) - Wyndham Lake Buena Vista Disney Springs Resort, Lake Buena Vista, United States
Duration: 4 Nov 20189 Nov 2018

Conference

ConferenceThe ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018)
Abbreviated titleESEC/FSE 2018
Country/TerritoryUnited States
CityLake Buena Vista
Period4/11/189/11/18

Keywords

  • Software effort estimation
  • data scarcity
  • synthetic data generation

Fingerprint

Dive into the research topics of 'A novel automated approach for software effort estimation based on data augmentation'. Together they form a unique fingerprint.

Cite this