TY - JOUR
T1 - A New Insight into the Oscillation Characteristics of Endosonic Files
AU - Lea, Simon
AU - Walmsley, Anthony
AU - Lumley, Philip
AU - Landini, Gabriel
PY - 2004/5/5
Y1 - 2004/5/5
N2 - The aim of this study was to assess the oscillation characteristics of unconstrained endosonic files using a scanning laser vibrometer (SLV). Factors investigated included file vibration frequency and node/antinode location as well as the variation in file displacement amplitude due to increasing generator power setting. A 30 kHz Mini Piezon generator (Electro-Medical Systems, Switzerland) was used in conjunction with a #15 and #35 K-file. Each file was fixed in position with the long axis of the file perpendicular to the SLV camera head. The laser from the SLV was scanned over the length of the oscillating file for generator power settings 1 to 5 (minimum to half power). Measurements were repeated ten times. The fundamental vibration frequency for both files was 27.50 kHz. Scans of each file showed the positions of nodes/anti-nodes along the file length. The #15 file demonstrated no significant variation in its mean maximum displacement amplitude with increasing generator power, except at power setting 5, where a decrease in displacement amplitude was observed. The #35 file showed a general increase in mean maximum displacement amplitude with increasing power setting, except at power setting 4 where a 65% decrease in displacement amplitude occurred. In conclusion, scanning laser vibrometry is an effective method for assessing endosonic file vibration characteristics. The SLV was able to demonstrate that (unloaded) file vibration displacement amplitude does not increase linearly with increasing generator power. Further work is being performed on a greater variety of files and generators. Vibration characteristics of files under various loads and varying degrees of constraint should also be investigated.
AB - The aim of this study was to assess the oscillation characteristics of unconstrained endosonic files using a scanning laser vibrometer (SLV). Factors investigated included file vibration frequency and node/antinode location as well as the variation in file displacement amplitude due to increasing generator power setting. A 30 kHz Mini Piezon generator (Electro-Medical Systems, Switzerland) was used in conjunction with a #15 and #35 K-file. Each file was fixed in position with the long axis of the file perpendicular to the SLV camera head. The laser from the SLV was scanned over the length of the oscillating file for generator power settings 1 to 5 (minimum to half power). Measurements were repeated ten times. The fundamental vibration frequency for both files was 27.50 kHz. Scans of each file showed the positions of nodes/anti-nodes along the file length. The #15 file demonstrated no significant variation in its mean maximum displacement amplitude with increasing generator power, except at power setting 5, where a decrease in displacement amplitude was observed. The #35 file showed a general increase in mean maximum displacement amplitude with increasing power setting, except at power setting 4 where a 65% decrease in displacement amplitude occurred. In conclusion, scanning laser vibrometry is an effective method for assessing endosonic file vibration characteristics. The SLV was able to demonstrate that (unloaded) file vibration displacement amplitude does not increase linearly with increasing generator power. Further work is being performed on a greater variety of files and generators. Vibration characteristics of files under various loads and varying degrees of constraint should also be investigated.
UR - http://www.scopus.com/inward/record.url?scp=2942544403&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/49/10/018
DO - 10.1088/0031-9155/49/10/018
M3 - Article
C2 - 15214544
VL - 49
SP - 2095
EP - 2102
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - (10)
ER -