A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected

E Hunt, S Gattolin, Henry Newbury, Jeffrey Bale, HM Tseng, DA Barrett, Jeremy Pritchard

Research output: Contribution to journalArticle

83 Citations (Scopus)


The aim of this study was to investigate the role of the amino acid permease gene AAP6 in regulating phloem amino acid composition and then to determine the effects of this altered diet on aphid performance. A genotype of Arabidopsis thaliana (L.) was produced in which the function of the amino acid permease gene AAP6 (At5g49630) was abolished. Plants homozygous for the insertionally inactivated AAP6 gene had a significantly larger mean rosette width than the wild type and a greater number of cauline leaves. Seeds from the aap6 mutant were also significantly larger than those from the wild-type plants. Sieve element (SE) sap was collected by aphid stylectomy and the amino acids derivatized, separated, and quantified using Capillary Electrophoresis with Laser Induced Fluorescence (CE-LIF). In spite of the large variation across samples, the total amino acid concentration of SE sap of the aap6 mutant plants was significantly lower than that of the wild-type plants. The concentrations of lysine, phenylalanine, leucine, and aspartic acid were all significantly lower in concentration in the aap6 mutant plants compared with wild-type plants. This is the first direct demonstration of a physiological role for an amino acid transporter in regulating SE composition in vivo. The amino acid availability in sieve element sap is thought to be the major limiting factor for aphid growth and reproduction. Despite the changes in their diet, the aphid Myzus persicae (Sulzer) displayed only small changes in feeding behaviour on mutant plants when measured using the Electronic Penetration Graph (EPG) technique. Salivation by the aphid into the SE (E1 phase) was increased on mutant plants but there was no significant effect on other feeding EPG behaviours, or in the rate of honeydew production. Consistent with the small effect on aphid feeding behaviour, there was only a small effect of reduced sieve element amino acid concentration on aphid reproduction. The data are discussed in relation to the regulation of phloem composition and the role of phloem amino acids in regulating aphid performance.
Original languageEnglish
Pages (from-to)55-64
Number of pages10
JournalJournal of Experimental Botany
Issue number1
Publication statusPublished - 1 Jan 2010


  • herbivore
  • aphid
  • sieve element
  • Arabidopsis thaliana
  • amino acid
  • AAP6
  • capillary electrophoresis
  • Myzus persicae
  • EPG
  • phloem


Dive into the research topics of 'A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected'. Together they form a unique fingerprint.

Cite this