Abstract
The market for electric vehicles (EV) is currently limited, but this is expected to grow rapidly with the increased advances in technology, particularly battery technology. Due to their high energy capacity and potential mass deployment, EVs will have significant impact on power networks. This paper presents a novel, user-friendly modelling tool which uses universally accepted, mathematically robust software to allow analysis of the effects of typical loads, microgeneration and EV charging on the distribution network, mainly the low voltage (LV) feeders, 11/0.4 kV substation and also part of the 11 kV section. Network asset ratings, voltage limits and thermal overloads are determined over a 24 hour period. The model allows the user to input any number of houses, schools, shops, microgeneration and EV charging posts which may be connected at each 400 V node. The EV charging post is modelled using pre-set connection times, battery capacity and battery state of charge (SOC). The effects of different EV battery charging scenarios on the LV network are investigated and presented in this paper. Comparison of different charging regimes demonstrates the effectiveness of the modelling tool and gives guidance for the design of EV charging infrastructure as more drivers choose EVs for their travelling needs.
Original language | English |
---|---|
Title of host publication | 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
ISBN (Electronic) | 9781479938322 |
DOIs | |
Publication status | Published - 1 Oct 2014 |
Event | 27th World Electric Vehicle Symposium and Exhibition, EVS 2014 - Barcelona, Spain Duration: 17 Nov 2013 → 20 Nov 2013 |
Publication series
Name | 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014 |
---|
Conference
Conference | 27th World Electric Vehicle Symposium and Exhibition, EVS 2014 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 17/11/13 → 20/11/13 |
Bibliographical note
Publisher Copyright:© 2013 IEEE.
Keywords
- EV battery
- LV distribution network
- power quality
- smart charging
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Automotive Engineering
- Fuel Technology