A machine learning approach for the identification of kinematic biomarkers of chronic neck pain during single- and dual-task gait

David Jiménez-Grande, S Farokh Atashzar, Valter Devecchi, Eduardo Martinez-Valdes, Deborah Falla

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND: Changes in gait characteristics have been reported in people with chronic neck pain (CNP).

RESEARCH QUESTION: Can we classify people with and without CNP by training machine learning models with Inertial Measurement Units (IMU)-based gait kinematic data?

METHODS: Eighteen asymptomatic individuals and 21 participants with CNP were recruited for the study and performed two gait trajectories, (1) linear walking with their head straight (single-task) and (2) linear walking with continuous head-rotation (dual-task). Kinematic data were recorded from three IMU sensors attached to the forehead, upper thoracic spine (T1), and lower thoracic spine (T12). Temporal and spectral features were extracted to generate the dataset for both single- and dual-task gait. To evaluate the most significant features and simultaneously reduce the dataset size, the Neighbourhood Component Analysis (NCA) method was utilized. Three supervised models were applied, including K-Nearest Neighbour, Support Vector Machine, and Linear Discriminant Analysis to test the performance of the most important temporal and spectral features.

RESULTS: The performance of all classifiers increased after the implementation of NCA. The best performance was achieved by NCA-Support Vector Machine with an accuracy of 86.85%, specificity of 83.30%, and sensitivity of 92.85% during the dual-task gait using only nine features.

SIGNIFICANCE: The results present a data-driven approach and machine learning-based methods to identify test conditions and features from high-dimensional data obtained during gait for the classification of people with and without CNP.

Original languageEnglish
Pages (from-to)81-86
Number of pages6
JournalGait and Posture
Volume96
Early online date13 May 2022
DOIs
Publication statusE-pub ahead of print - 13 May 2022

Bibliographical note

Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

Keywords

  • Machine learning
  • Wearable sensors
  • Gait kinematics
  • Biomarkers
  • Chronic neck pain

Fingerprint

Dive into the research topics of 'A machine learning approach for the identification of kinematic biomarkers of chronic neck pain during single- and dual-task gait'. Together they form a unique fingerprint.

Cite this