A genetic element present on megaplasmids allows Enterococcus faecium to use raffinose as carbon source

Xinglin Zhang, Joyce E P Vrijenhoek, Marc J M Bonten, Rob J L Willems, Willem van Schaik

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Enterococcus faecium is a commensal of the gastrointestinal tract of humans and animals. Since the 1990s, it has also emerged as a nosocomial pathogen. Little is known about carbon metabolism of E. faecium even though the ability to utilize different sugars could be an important factor in adapting to different ecological niches. In this study we identify an E. faecium gene cluster that is responsible for the metabolism of the α-galactoside sugar raffinose. Phenotypic testing of seven E. faecium isolates of which the genomes were previously sequenced showed that one isolate (strain E980) could grow on raffinose. Genome analysis identified a gene cluster containing two genes encoding α-galactosidases (termed agaA and agaB) that was uniquely present in E980. The agaA and agaB genes were significantly more frequently found in strains that are phylogenetically related to E980 and were more prevalent in surveillance isolates from hospital and community sources than in isolates from clinical infections. Disruption of the α-galactosidase gene agaB, but not of agaA, disabled growth on raffinose in strain E980. In all strains agaA and agaB are carried on megaplasmids that are between 150 and 300 kb in size. Filter-mating experiments showed that the megaplasmid of E980 can be transferred to a plasmidless recipient which then gains the ability to grow on raffinose. The observation that raffinose utilization by E. faecium is a trait carried by megaplasmids indicates that these megaplasmids can have important roles in shaping the competitive fitness of E. faecium in the environment, for example by expanding the metabolic repertoire of this organism.

Original languageEnglish
Pages (from-to)518-28
Number of pages11
JournalEnvironmental Microbiology
Volume13
Issue number2
DOIs
Publication statusPublished - Feb 2011

Keywords

  • Animals
  • Bacterial Proteins
  • Base Sequence
  • Carbon
  • Enterococcus faecium
  • Genes, Bacterial
  • Genome, Bacterial
  • Humans
  • Multigene Family
  • Mutation
  • Oligonucleotide Array Sequence Analysis
  • Plasmids
  • Raffinose
  • alpha-Galactosidase
  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'A genetic element present on megaplasmids allows Enterococcus faecium to use raffinose as carbon source'. Together they form a unique fingerprint.

Cite this