Abstract
In this paper, a novel algorithm for the parameters estimation of chirp signals is proposed. Chirp rate and centroid frequency of chirp signals are estimated based on a one-dimensional dechirp optimization problem (DOP). The proposed DOP algorithm is useful for synthetic aperture radar (SAR) systems since the azimuth signal of a moving target represents chirp properties, so the along-track and across-track velocities of moving targets can be efficiently estimated. The distinctive feature of the proposed DOP algorithm, as compared with other motion parameters estimators, is its efficiency from the computational point of view. This is obtained by converting the traditional two-dimensional search to an efficient and simple one-dimensional optimization problem. Finally, simulations are presented to validate the theoretical investigations.
Original language | English |
---|---|
Title of host publication | 2020 IEEE Radar Conference, RadarConf 2020 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
ISBN (Electronic) | 9781728189420 |
DOIs | |
Publication status | Published - 21 Sept 2020 |
Event | 2020 IEEE Radar Conference, RadarConf 2020 - Florence, Italy Duration: 21 Sept 2020 → 25 Sept 2020 |
Publication series
Name | IEEE National Radar Conference - Proceedings |
---|---|
Volume | 2020-September |
ISSN (Print) | 1097-5659 |
Conference
Conference | 2020 IEEE Radar Conference, RadarConf 2020 |
---|---|
Country/Territory | Italy |
City | Florence |
Period | 21/09/20 → 25/09/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
Keywords
- Chirp parameters estimation
- dechirp operation
- moving target velocity estimation
- synthetic aperture radar (SAR)
ASJC Scopus subject areas
- Electrical and Electronic Engineering