TY - JOUR
T1 - A computationally efficient adaptive robust control scheme for a quad-rotor transporting cable-suspended payloads
AU - Ullah, N.
AU - Sami, I.
AU - Shaoping, W.
AU - Mukhtar, H.
AU - Wang, X.
AU - Shahariar Chowdhury, M.
AU - Techato, K.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.
AB - This article proposes a computationally efficient adaptive robust control scheme for a quad-rotor with cable-suspended payloads. Motion of payload introduces unknown disturbances that affect the performance of the quad-rotor controlled with conventional schemes, thus novel adaptive robust controllers with both integer- and fractional-order dynamics are proposed for the trajectory tracking of quad-rotor with cable-suspended payload. The disturbances acting on quad-rotor due to the payload motion are estimated by utilizing adaptive laws derived from integer- and fractional-order Lyapunov functions. The stability of the proposed control systems is guaranteed using integer- and fractional-order Lyapunov theorems. Overall, three variants of the control schemes, namely adaptive fractional-order sliding mode (AFSMC), adaptive sliding mode (ASMC), and classical Sliding mode controllers (SMC)s) are tested using processor in the loop experiments, and based on the two performance indicators, namely robustness and computational resource utilization, the best control scheme is evaluated. From the results presented, it is verified that ASMC scheme exhibits comparable robustness as of SMC and AFSMC, while it utilizes less sources as compared to AFSMC.
KW - Quad-rotor control
KW - adaptive robust control
KW - fractional calculus
KW - payload
KW - processor in the loop experiments
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85106418259&partnerID=MN8TOARS
U2 - 10.1177/09544100211013617
DO - 10.1177/09544100211013617
M3 - Article
SN - 0954-4100
VL - 236
SP - 379
EP - 395
JO - Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
IS - 2
ER -