TY - JOUR
T1 - 1D-myo-inositol 1,4,5-trisphosphate dephosphorylation by rat enterocytes involves an intracellular 5-phosphatase and non-specific phosphatase activity at the cell surface.
AU - Rubiera, C
AU - Velasco, G
AU - Michell, RH
AU - Lazo, PS
AU - Shears, SB
PY - 1988/10
Y1 - 1988/10
N2 - We studied the dephosphorylation of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate) by permeabilized rat intestinal epithelial cells incubated in a medium resembling intracellular ionic strength and pH. Saponin-permeabilized cells rapidly dephosphorylated Ins(1,4,5)P3 to a mixture of three InsP2 (inositol bisphosphate) isomers, namely Ins(1,4)P2, Ins(1,5)P2 and Ins(4,5)P2. These products were identified by h.p.l.c. analysis after dephosphorylation of both 3H- and 32P-labelled Ins(1,4,5)P3. Ins(1,4)P2 accumulated to about half of the concentration attained by Ins(1,5)P2 and Ins(4,5)P2. Ins(1,4,5)P3 dephosphorylation was inhibited, by up to 75%, by 10 mM-glucose 6-phosphate. In these conditions Ins(1,4)P2 became the predominant product, indicating that glucose 6-phosphate inhibited non-specific dephosphorylation of Ins(1,4,5)P3, at least at the 1- and 4-phosphate groups. Ins(1,4)P2 was further dephosphorylated, and the major InsP (inositol monophosphate) product was Ins4P. Most of the glucose 6-phosphate-inhibitable Ins(1,4,5)P3 phosphatase activity was exposed on the cell surface. The glucose 6-phosphate-insensitive Ins(1,4,5)P3 5-phosphatase activity was not detected until the cells were permeabilized with saponin. This intracellular 5-phosphatase activity was: (i) predominantly associated with the particulate portion of the cell; (ii) strongly inhibited by 10 mM-2,3-bisphosphoglycerate; (iii) insensitive to 50 mM-Li+. Therefore the Ins(1,4,5)P3 5-phosphatase activity in enterocytes appears similar to the 5-phosphatase that has been characterized in a number of cell types
AB - We studied the dephosphorylation of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate) by permeabilized rat intestinal epithelial cells incubated in a medium resembling intracellular ionic strength and pH. Saponin-permeabilized cells rapidly dephosphorylated Ins(1,4,5)P3 to a mixture of three InsP2 (inositol bisphosphate) isomers, namely Ins(1,4)P2, Ins(1,5)P2 and Ins(4,5)P2. These products were identified by h.p.l.c. analysis after dephosphorylation of both 3H- and 32P-labelled Ins(1,4,5)P3. Ins(1,4)P2 accumulated to about half of the concentration attained by Ins(1,5)P2 and Ins(4,5)P2. Ins(1,4,5)P3 dephosphorylation was inhibited, by up to 75%, by 10 mM-glucose 6-phosphate. In these conditions Ins(1,4)P2 became the predominant product, indicating that glucose 6-phosphate inhibited non-specific dephosphorylation of Ins(1,4,5)P3, at least at the 1- and 4-phosphate groups. Ins(1,4)P2 was further dephosphorylated, and the major InsP (inositol monophosphate) product was Ins4P. Most of the glucose 6-phosphate-inhibitable Ins(1,4,5)P3 phosphatase activity was exposed on the cell surface. The glucose 6-phosphate-insensitive Ins(1,4,5)P3 5-phosphatase activity was not detected until the cells were permeabilized with saponin. This intracellular 5-phosphatase activity was: (i) predominantly associated with the particulate portion of the cell; (ii) strongly inhibited by 10 mM-2,3-bisphosphoglycerate; (iii) insensitive to 50 mM-Li+. Therefore the Ins(1,4,5)P3 5-phosphatase activity in enterocytes appears similar to the 5-phosphatase that has been characterized in a number of cell types
UR - http://europepmc.org/abstract/med/2848503
U2 - 10.1042/bj2550131
DO - 10.1042/bj2550131
M3 - Article
C2 - 2848503
SN - 0264-6021
VL - 255
SP - 131
EP - 137
JO - The Biochemical journal
JF - The Biochemical journal
IS - 1
ER -