TY - JOUR
T1 - 11beta-hydroxysteroid dehydrogenase type 1 in differentiating omental human preadipocytes: from de-activation to generation of cortisol
AU - Bujalska, Iwona
AU - Walker, Elizabeth
AU - Tomlinson, Jeremy
AU - Hewison, Martin
AU - Stewart, Paul
PY - 2002/1/1
Y1 - 2002/1/1
N2 - In humans, glucocorticoids are important regulators of adipose tissue distribution and function but circulating cortisol concentrations are normal in most patients with obesity. However, intracellular glucocorticoid levels can be modified by a microsomal enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) expressed mainly in the liver and adipose tissue. Locally generated cortisol within human adipose tissue can induce preadipocyte differentiation, but the relationship between 11beta-HSD1 expression and adipogenesis is unknown. Our present study has shown that in intact, undifferentiated omental (OM) but not subcutaneous (SC) preadipocytes, 11beta-HSD1 acts primarily as a dehydrogenase inactivating cortisol to cortisone. When preadipocytes become "committed" to adipocyte differentiation, oxo-reductase activity predominates generating cortisol. Since glucocorticoids are not only essential for OM preadipocyte differentiation but also inhibit cell proliferation, we postulate that 11beta-HSD1 dehydrogenase activity in "uncommitted" OM preadipocytes may provide an autocrine mechanism to protect preadipocytes from differentiation, in turn facilitating their proliferation. Once early differentiation is initiated, a "switch" to 11beta-HSD1 oxo-reductase activity generates cortisol, thus promoting adipogenesis. The differences in set-point of 11beta-HSD1 activity between OM and SC human adipose tissue may be an important factor in the pathogenesis of visceral obesity.
AB - In humans, glucocorticoids are important regulators of adipose tissue distribution and function but circulating cortisol concentrations are normal in most patients with obesity. However, intracellular glucocorticoid levels can be modified by a microsomal enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) expressed mainly in the liver and adipose tissue. Locally generated cortisol within human adipose tissue can induce preadipocyte differentiation, but the relationship between 11beta-HSD1 expression and adipogenesis is unknown. Our present study has shown that in intact, undifferentiated omental (OM) but not subcutaneous (SC) preadipocytes, 11beta-HSD1 acts primarily as a dehydrogenase inactivating cortisol to cortisone. When preadipocytes become "committed" to adipocyte differentiation, oxo-reductase activity predominates generating cortisol. Since glucocorticoids are not only essential for OM preadipocyte differentiation but also inhibit cell proliferation, we postulate that 11beta-HSD1 dehydrogenase activity in "uncommitted" OM preadipocytes may provide an autocrine mechanism to protect preadipocytes from differentiation, in turn facilitating their proliferation. Once early differentiation is initiated, a "switch" to 11beta-HSD1 oxo-reductase activity generates cortisol, thus promoting adipogenesis. The differences in set-point of 11beta-HSD1 activity between OM and SC human adipose tissue may be an important factor in the pathogenesis of visceral obesity.
UR - http://www.scopus.com/inward/record.url?scp=0036932983&partnerID=8YFLogxK
U2 - 10.1081/ERC-120016822
DO - 10.1081/ERC-120016822
M3 - Article
C2 - 12530648
SN - 1532-4206
SN - 1532-4206
VL - 28
SP - 449
EP - 461
JO - Endocrine Research
JF - Endocrine Research
ER -